Analysis of Dysarthric Speech using Distinctive Feature Recognition
نویسندگان
چکیده
Imprecise articulatory breakdown is one of the characteristics of dysarthric speech. This work attempts to develop a framework to automatically identify problematic articulatory patterns of dysarthric speakers in terms of distinctive features (DFs), which are effective for describing speech production. The identification of problematic articulatory patterns aims to assist speech therapists in developing intervention strategies. A multilayer perceptron (MLP) system is trained with nondysarthric speech data for DF recognition. Agreement rates between the recognized DF values and the canonical values based on phonetic transcriptions are computed. For nondysarthric speech, our system achieves an average agreement rate of 85.7%. The agreement rate of dysarthric speech declines, ranging between 1% to 3% in mild cases, 4% to 7% in moderate cases, and 7% to 12% in severe cases, when compared with non-dysarthric speech. We observe that the DF disagreement patterns are consistent with the analysis of a speech therapist.
منابع مشابه
Robust Feature Extraction to Utterance Fluctuation of Articulation Disorders Based on Random Projection
We investigated the speech recognition of a person with an articulation disorder resulting from the athetoid type of cerebral palsy. The articulation of the first speech tends to become unstable due to strain on speech-related muscles, and that causes degradation of speech recognition. In this paper, we introduce a robust feature extraction method based on PCA (Principal Component Analysis) and...
متن کاملDeep Autoencoder Based Speech Features for Improved Dysarthric Speech Recognition
Dysarthria is a motor speech disorder, resulting in mumbled, slurred or slow speech that is generally difficult to understand by both humans and machines. Traditional Automatic Speech Recognizers (ASR) perform poorly on dysarthric speech recognition tasks. In this paper, we propose the use of deep autoencoders to enhance the Mel Frequency Cepstral Coefficients (MFCC) based features in order to ...
متن کاملConvolutive Bottleneck Network with Dropout for Dysarthric Speech Recognition
In this paper, we investigate the recognition of speech produced by a person with an articulation disorder resulting from athetoid cerebral palsy. The articulation of the first spoken words tends to become unstable due to strain on speech muscles, and that causes degradation of speech recognition. Therefore, we propose a robust feature extraction method using a convolutive bottleneck network (C...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کامل